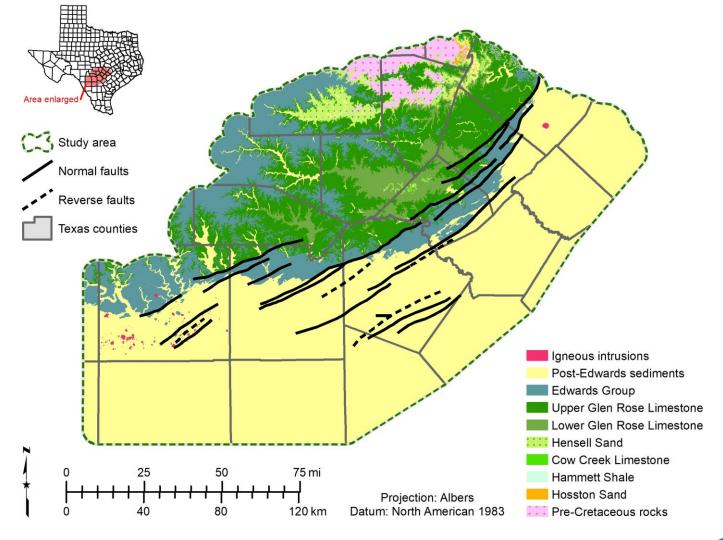
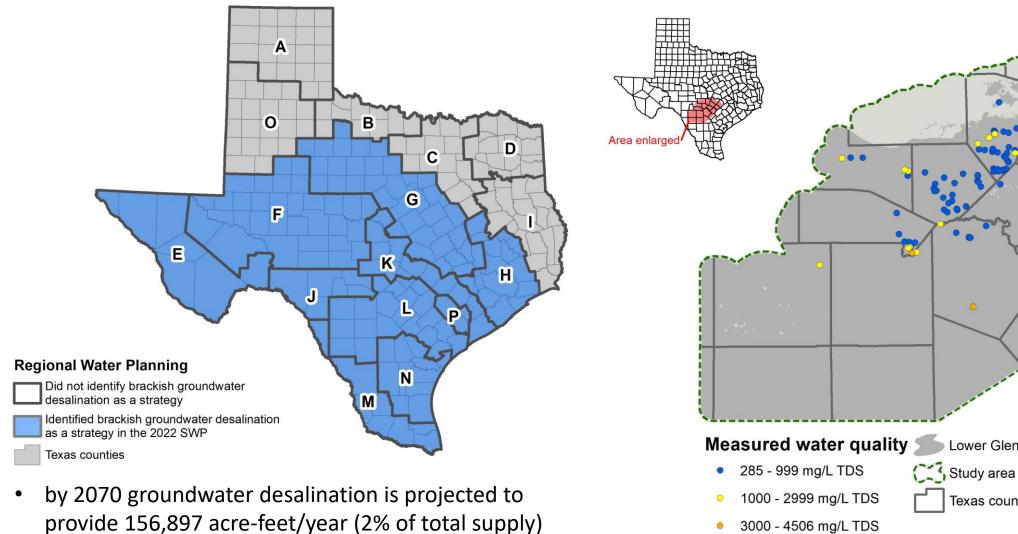
Estimating groundwater salinity using the Alger-Harrison method in the Hill Country Trinity Aquifer, Texas

> Theme 4, Session 16 Friday October 29, 2021 2021 GeoGulf Meeting

Alysa K. Suydam*, Evan D. Strickland, and Mark C. Robinson


Unless specifically noted, this presentation does not necessarily reflect official Board positions or decisions

Study goals and background


- Hill Country portion of the Trinity Aquifer
- Map stratigraphy, water quality, aquifer parameters
- estimate aquifer salinity, brackish groundwater volumes
- full report and GIS data to be released next year

2

Why map aquifer salinity?

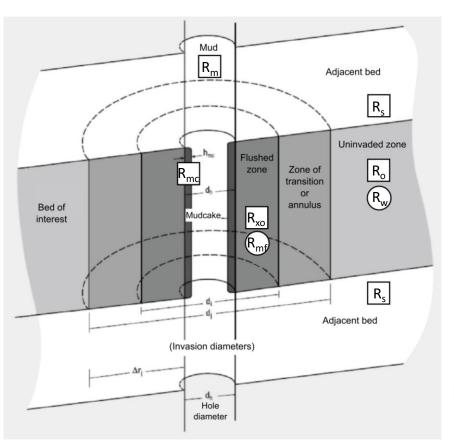
3000 - 4506 mg/L TDS 0

Texas counties

Lower Glen Rose limestone extent

3

Typical BRACS study


- acquire data and process into BRACS database
- map stratigraphy
- assign aquifer codes
- clastic aquifers: map net sands
- estimate and map aquifer salinity
- produce groundwater volume estimates

Salinity class	Total dissolved solids concentration (TDS, mg/L)
Fresh	0 < TDS < 1,000
Slightly saline	1,000 ≤ TDS < 3,000
Moderately saline	3,000 ≤ TDS < 10,000
Very saline	10,000 ≤ TDS < 35,000
Brine	35,000 ≤ TDS

Winslow and Kister, 1956

How did we estimate salinity?

modified from Schlumberger, 2009

- Resistivity ratio method (Alger and Harrison, 1989)
- requires shallow (R_{xo}) and deep resistivity (R_o) tool
- requires mud filtrate resistivity (R_{mf}) measurement
- calculate water resistivity (R_w), convert to conductivity (C_w), then use TDS-C_w relationship to convert to TDS (mg/L)

Basic derivation of the Alger-Harrison method

 $\frac{R_{xo}}{R_{mf}} = \frac{a}{\phi^m}$

1)
$$R_o = R_w \cdot \frac{a}{\phi^m}$$
 & $R_{xo} = R_{mf} \cdot \frac{a}{\phi^m}$

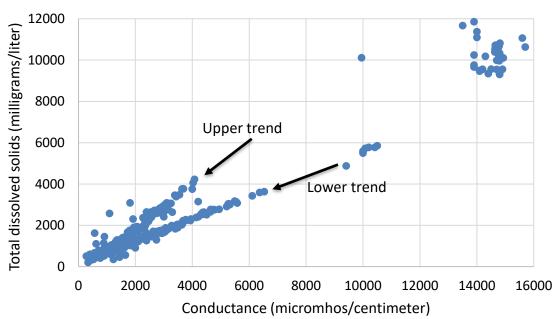
$$\frac{R_o}{R_w} = \frac{a}{\phi^m} \qquad \& \qquad$$

 $3 \quad \frac{R_o}{R_w} = \frac{R_{xo}}{R_{mf}}$

Texas Water

Development Board

 $R_w = \frac{R_o \cdot R_{mf}}{R_{ro}}$


5

New (to us) approach: TDS-C_w relationship

- established direct relationships of TDS and C_w
 - no NaCl equivalents and 'ct' factor
 - summed Ca²⁺, Mg²⁺, K⁺, Na⁺, Sr²⁺, SiO₂, HCO₃⁻, CO₃²⁻, Cl⁻, SO₄²⁻, F⁻, NO³⁻
 - full bicarbonate value
- NaCl equivalents do not capture effects of ion pairing and complexing
- fit data with linear or second-degree polynomial equations
- assumed WQ beyond our data control is increasingly NaCl dominated (synthetic data)

Challenges: TDS-C_w relationship

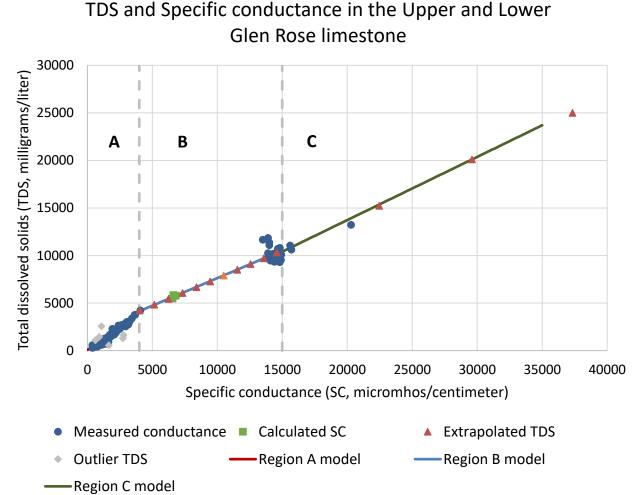
Total dissolved solids and Specific conductance

12000 Total dissolved solids (milligrams/liter) 10000 8000 6000 4000 2000 2000 4000 6000 8000 10000 12000 0 14000 16000 Conductance (micromhos/centimeter)

Total dissolved solids and conductance

 geographically distinct water populations?

- redox conditions?
- field sampling protocol?
- something else?


• All other labs • Texas Department of Health

- analytical method
- 'diluted conductance'
- disrupts ion pairing/complexing

Solution and Results: TDS-C_w relationships

- U.S.G.S. PHREEQC to calculate specific conductance
 - sparse produced water samples
 - some saline samples
- UG or LG; $C_w \le 4,000$ (Region A) $TDS = 9 \cdot 10^{-5} \cdot (C_w)^2 + 0.6622 \cdot C_w + 76.044$
- UG, LG, HE, or CC; $4,000 < C_w \le 15,000$ (Region B) $TDS = 0.5801 \cdot C_w + 1826.5$
- UG, LG, HE, or CC; $C_w > 15,000$ (Region C) $TDS = 0.6644 \cdot C_w + 442.87$

Challenges: log-header R_{mf} values

- 120 100 80 Frequency 60 40 20 1945-1949 1954 1959 1959 1964 1969 1971914 1979 1980-198A 1985-1989 1990 1994 1995 1999 2000-2004 2005-2009 2010-2014 Date no Rmf reported reported Rmf
- R_{mf} reported on logs used for calculation in the study

- measurement quality from log header alone?
- Lowe and Dunlap (1986) – R_{mf} can be off by up to 40%
- logs prior to about the 1960s do not commonly report R_{mf}

www.facebook.com/twdboard www.twdb.texas.gov

🔰 @twdb

Solution and Results: R_m-R_{mf} relationship

3mf at 75 degrees Fahrenheit

- added log run data to BRACS
- normalized to 75 degrees Fahrenheit
- performed linear regression of R_{mf75} and R_{m75}

$$R_{mf75} = 0.9157 \cdot R_{m75} - 0.1446$$

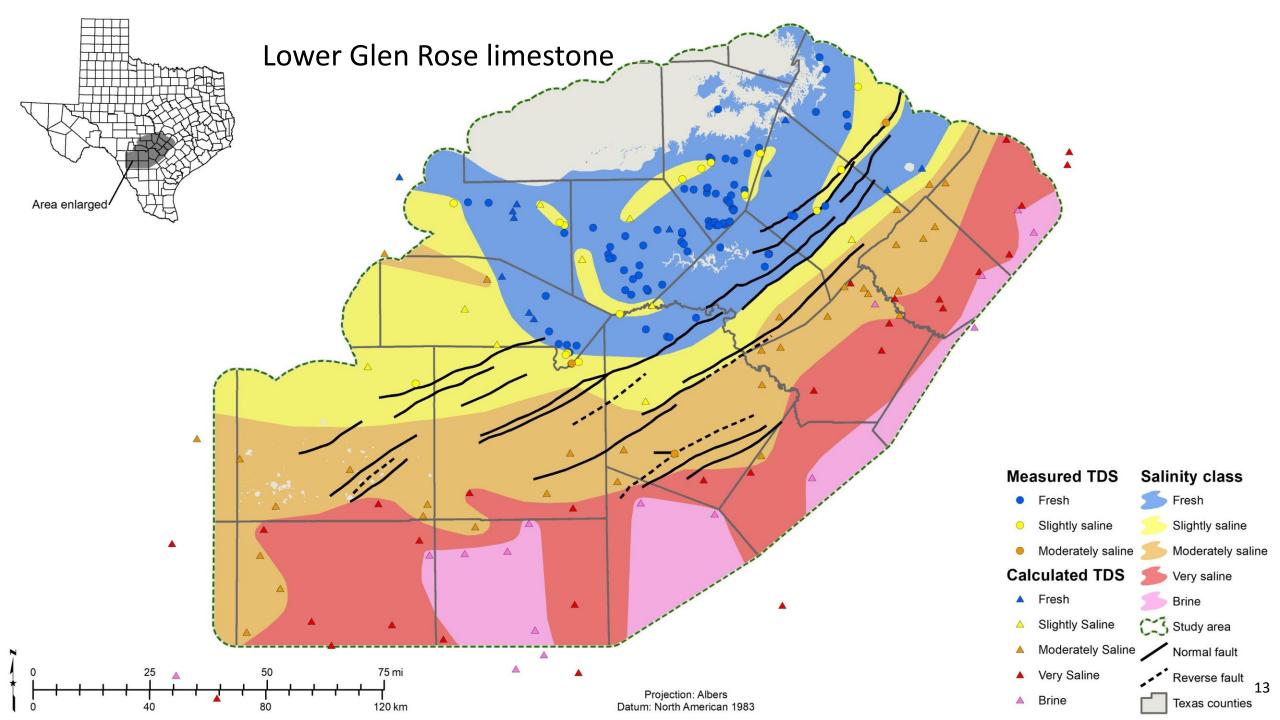
 R_m and R_{mf} outlier removed (n = 259) 25 y = 0.9157x - 0.1446 $R^2 = 0.9495$ 20 15 10 5 5 10 15 20 25 30


Rm at 75 degrees Fahrenheit

SCHLUMBERGER DUA		INDUCTION - LATEROLOG	
	COMPANY _ <i>Tennecc</i>	O.I Company	
	WELL R.P. Die	iod #1	
FIELD Wildcat			
·L	COUNTY Caldwell	STATE TEXES	
L SE V	LOCATION #		Other Services:
COUNTY - FELD or LOCATION WELL	Sec Twp	Rge	
Permanent Datum: <u>F</u> .L. Log Measured From <u>KR</u> <u>1</u>		, Elev, <u>596</u> Above Perm. Datum	Elev.: K.B. <u>627</u> D.F. <u>606</u> G.L. <u>526</u>
Date Run No.	9-28-67 Two		
Depth-Driller 5300 Depth-Logger 294			
Dan. Log Intervo Top Log Intervo	625		
Cosing - Driller <u>5 7/2 0 52</u> 4 Cosing - Logger [, 2.5 Bit Size 7 7/2		<u>\$:</u> ₽ ∳	%
Type Fluid in Hole <u>Ge Beat x</u>		••••••••••••••••••••••••••••••••••••••	
Dens. Visc. pH Fluid Le	345 8.5 16.2 ml	ml	mi mi
Source of Samp	■ <u>Pire</u> Pir ■ 1.73 @ 97 °F	* * F &	°F @ °F
R _{at} & Meas. Ten R _{at} & Meas. Ten	e • • • • • • • • • • • • • • • • • • •	°F @ °F @	7° <u>0</u> 7° 7° <u>0</u> 7°
Source: R.d. R.	1.15 @ J415 °F		°F @ °F
Time Since Circ. Max. Rec. Temp	2400	Ĩ Ĩ	°F 5g
Equip. Location Recorded By	1521 Kenery	, I	
Witnessed By	Peach nr. Burnette	÷:	

Estimating TDS process summarized

- Calculate corrected bottom hole temperature: TBH (corrected) = 162.8
- 2. Calculate R_{mf} if not provided: $R_{mf75} = 1.9$



$$R_w = \frac{R_w - R_{y_1}}{R_{x_0}}$$

UG, LG, HE, or CC; $C_w > 15,000$ TDS = 0.6644 $\cdot C_w + 442.87$

Estimating TDS process summarized

- 1. Calculate corrected bottom hole temperature: **TBH (corrected) = 162.8**
- 2. Calculate R_{mf} if not provided: $R_{mf75} = 1.9$
- 3. Select depth to analyze and read R_o and R_{xo} from log: $R_o = 0.8$; $R_{xo} = 8$
- 4. Calculate R_{mf} at calculation depth using geothermal gradient calculated from 30year average surface temp and corrected bottom hole temp: $R_{mf Tf} = 1.03$
- 5. Calculate R_w : $R_w = 0.1$
- 6. Convert R_w to R_{w75} : $R_{w75} = 0.19$
- 7. Calculate C_{w75} from R_{w75} : $C_{w75} = 52631.58$
- 8. Convert C_{w75} to TDS using formation and C_w range equation: **TDS = 35411**

Conclusions

- direct TDS-C_w relationships more accurately estimate TDS
- PHREEQC can help expand measured water quality dataset by calculating $\rm C_w$
- Estimating R_{mf75} from R_{m75} is useful for older geophysical logs
- Users should be critical of log-reported R_{mf} values when using the Alger-Harrison method
- Users should be critical of historical data
- More saline measured water quality samples (both value and range) will improve TDS-C_w relationships

Questions?

Alysa Suydam, P.G. <u>Alysa.Suydam@twdb.texas.gov</u> 512-936-9488

Evan Strickland, P.G. Evan.Strickland@twdb.texas.gov 512-463-6929

Mark Robinson, P.G. Mark.Robinson@twdb.texas.gov 512-463-7657

References

- Alger, R.P., and Harrison, C.W., 1989, Improved fresh water assessment in sand aquifers utilizing geophysical well logs: The Log Analyst, v. 30, no. 1, pp. 31-44.
- Lowe, T.A., and Dunlap, H.F., 1986, Estimation of mud filtrate resistivity in fresh water drilling muds: The Log Analyst, v. 27, no. 2, March-April, pp. 77-84.
- Schlumberger, 2009, Log interpretation charts: Schlumberger, Houston, Texas.
- Winslow, A.G., and Kister, L.R., 1956, Saline-water resources of Texas: U.S. Geological Survey Water-Supply Paper 1365, 105 p.

